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We study the quantum Jarzynski relation for driven quantum models embedded in various environments. We
do so by generalizing a proof presented by Mukamel �Phys. Rev. Lett. 90, 170604 �2003�� for closed quantum
systems. In this way, we are able to prove that the Jarzynski relation also holds for a bipartite system with
microcanonical coupling. Furthermore, we show that, under the assumption that the interaction energy remains
constant during the whole process, the relation is valid even for canonical coupling. The same follows for open
quantum systems at high initial temperatures up to third order of the inverse temperature. Our analytical study
is complemented by a numerical investigation of a special model system.
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I. INTRODUCTION

If a system is driven far away from thermal equilibrium
by an external force, its behavior can no longer be described
by linear response theory or other near-equilibrium approxi-
mations. Fluctuations may dominate the evolution of the sys-
tem. Recently, some astonishingly general theorems, which
make exact statements, have been found �1–5�. For classi-
cally described systems there exist several proofs for various
kinds of Hamilton dynamics �2,5�.

One faces a different situation for systems the dynamics
of which are described by quantum mechanics. Mostly for
very restricted situations or only for very special model sys-
tems have those theorems been shown to hold �6–12� so far.
However, there exists a general proof of the Jarzynski rela-
tion, a nonequilibrium work theorem, for closed quantum
systems �13�. Generalizations to open quantum systems have
been discussed only for restricted model systems or for vari-
ous constraints on the microscopic dynamics �11,14�.

One major problem is that the proofs of the so-called
group of nonequilibrium fluctuation theorems as well as the
work fluctuation theorems relate properties of trajectories
from forward and backward processes with each other. Try-
ing to transfer these proofs to quantum systems brings up the
problem of trajectories in the quantum case.

Another, possibly even more severe problem is the ques-
tion of what exactly has to be understood by fluctuations in a
quantum system. In quantum mechanics the state of a system
is fully described by its density operator. Without any mea-
surement, it is ambiguous to speak about fluctuations, be-
cause the probability of a measurement outcome of a certain
quantity might vary, but not the untouched quantity itself.
Fluctuations of one-time quantities are not ambiguous as far
as their measurement is concerned. If, however, the relevant
observable of two-time quantities, like work, for example,
does not commute with itself at different times, then even the
measurement of fluctuation becomes ambiguous. Every mea-
surement changes the state of the system, thereby influencing
its evolution. In the case of work fluctuation theorems, the
measurement has naturally to be included since one needs to
measure the amount of work performed on the system. This
measurement will then yield different values for each repeti-
tion and is thus said to fluctuate. So in this sense we have no
problem speaking of fluctuations.

This is why we try the following ansatz. We concentrate
on a work fluctuation theorem. In order to circumvent the
problem of the definition of a quantum trajectory, we use the
quite general proof for closed quantum systems �13�, and try
to generalize it to open quantum systems without having to
define any quantum trajectory �in the sense of stochastic un-
raveling, i.e., continuous measurement�. This will be done by
splitting up the exponential function of the partition sum into
its system and environmental part, respectively. There is no
need to specify the underlying dynamics any further. It is not
necessary to measure the system during the process since we
rely on measurements at the beginning and the end of the
process only. The idea of a two-time measurement approach
was first developed by Kurchan �6�.

First, we start by a brief review of the Jarzynski relation
in Sec. II. Then, in Sec. III we will discuss conditions under
which we will prove that the Jarzynski relation is valid. This
analytical study will then be supplemented by a discussion of
our numerical results in Sec. IV.

II. JARZYNSKI RELATION

If we perform a process on a system initially in a canoni-
cal state, the system will, in general, be driven out of equi-

librium. Therefore, the average work W̄ we have to bring up
in order to perform the process will exceed the free energy
difference �F between initial and final states:

W̄ � �F . �1�

In 1997, Jarzynski came up with a remarkable relation that
connects the nonequilibrium variable W with an equilibrium
property of the system, �F �1�:

e−�W = e−��F =
Z�t�
Z�0�

. �2�

This relation holds no matter how far the system is driven
out of equilibrium. It allows one to access the free energy
difference between two states via nonequilibrium measure-
ments. This is very useful for experiments which cannot be
carried out in quasiequilibrium �15�: Note that the right-hand
side does not depend on how we get from the initial to the
final state.
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The Jarzynski relation has been generalized to closed
quantum systems by Mukamel �13� under the condition that
the system is initially in a canonical state.

III. ANALYTICAL RESULTS

We consider a bipartite system, split into the so-called
system and environment, respectively. An arbitrary process is
performed on the system, leading to an explicitly time-
dependent Hamilton operator. The compound system is con-
sidered closed and the complete Hamilton operator reads

Ĥ�t� = ĤS�t� � 1̂C + 1̂S
� ĤC + �Ĥint, �3�

where ĤS�t� denotes the Hamiltonian of the system, ĤC the

operator for the environment, and Ĥint the interaction Hamil-
tonian with the coupling constant �, determining the strength
of the coupling. In the following, we investigate different
coupling scenarios.

A. Microcanonical coupling

We consider a microcanonical coupling �16� �see Fig. 1�
first. This means that neither particle nor energy exchange
between the system and the environment is allowed. Note
that because of entanglement between the system and the
environment the work performed on the system will, never-
theless, be influenced by the environment. This is due to the
fact that the off-diagonal elements of the reduced density
operator of the system will be damped away. Since these
elements are crucial for transitions within the system, the
work should, indeed, be influenced by the microcanonical
coupling.

Since no energy transfer between system and environment
is allowed, we require that at any time t the Hamilton opera-
tor of the environment and the system, respectively, have to
be separate constants of motion:

�Ĥ�t�,ĤC� = 0, �Ĥ�t�,ĤS�t�� = 0. �4�

Using �ĤS�t� , ĤC�=0 we readily arrive at

�ĤC,Ĥint� = 0, �ĤS�t�,Ĥint� = 0. �5�

The quantum Jarzynski relation for closed systems states that
�cf. �2��

e−�W =
Z�t�
Z�0�

�6�

holds for arbitrary processes. Our aim is to prove that this
relation also holds for this type of open quantum system, i.e.,
for microcanonical coupling. To this end, we investigate the
relation of the partition sums:

Z�t� = Tr�e−�Ĥ�t�� = Tr�e−��ĤS�t�� 1̂C+1̂S
�ĤC+ĤI�� . �7�

Here we have introduced the abbreviation ĤI��Ĥint. Since
the Hamilton operators commute with each other according
to �5�, we can split the exponential function, arriving at

Z�t� = Tr�e−�ĤS�t�
� e−�ĤC

e−�ĤI
� . �8�

Using the definition of a canonical density operator �̂can

�e−�Ĥ /Z we rewrite

Z�t� = Tr��̂can
S �t� � �̂can

C e−�ĤI
�ZS�t�ZC. �9�

For the time dependency of the trace we find, based on the
Liouville-von Neumann equation,

d

dt
� Z�t�

ZS�t�ZC� = − i Tr��Ĥ�t��,�̂can
S �t� � �̂can

C �e−�ĤI
	 .

�10�

Making use of the cyclic property of the trace and the com-
mutator relations �5�, we end up with

d

dt
Tr��̂can

S �t� � �̂can
C e−�ĤI

� = 0 ∀ t . �11�

Thus, we have in particular

Tr��̂can
S �t� � �̂can

C e−�ĤI
� = Tr��̂can

S �0� � �̂can
C e−�ĤI

� . �12�

From this we conclude, using Eq. �9� in Eq. �6�,

e−�W = e−�WS
=

ZS�t�
ZS�0�

. �13�

The work on the compound system equals that on the open
one since no energy exchange between the system and the
environment is allowed, and therefore the substitution in Eq.
�13� on the left-hand side is justified. Thus the Jarzynski
equation holds for microcanonical coupling.

B. Canonical coupling: Constant interaction energy

Next, we turn to systems which are allowed to exchange
energy with their surroundings. The Hamilton operator is
again of the form �3�. We assume the interaction energy to be
a constant of motion:

�Ĥ�t�,ĤI� = 0 ⇒ �ĤS�t� + ĤC,ĤI� = 0. �14�

This assumption is motivated by the fact that, for a suffi-
ciently clear separation between system and environment,
the interaction energy should be very small compared to the
energy of the system and the environment, respectively.
Therefore, its change should also be considered to be negli-

S

environment

closed

microcanonically embedded
no particle/no energy transfer, but entangling

FIG. 1. Microcanonical coupling: between a small subsystem S
and its environment. Total system is a closed compound system,

initially in the canonical state �̂�0�=e−�Ĥ�0� /Z�0�.
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gible. The proof then runs in complete analogy to that of the
microcanonical coupling scenario. We start using the Jarzyn-
ski relation �2� for closed systems. The partition sum can be
written as in Eq. �9� using the commutator relation �14�:

Z�t� = Tr�e−��Â+B̂�� =
�14�

Tr�e−�Âe−�B̂� , �15�

with Â� ĤS�t� � 1̂C+1̂S � ĤC and B̂� ĤI. Using �Â , B̂�=0

and resubstituting Â and B̂, we easily arrive at

Z�t� = Tr��̂can
S �t� � �̂can

C e−�ĤI
�ZS�t�ZC, �16�

as in the case of microcanonical coupling. Again, we inves-
tigate the time dependency of the trace using the Liouville-
von Neumann equation and the cyclic property of the trace,

d

dt
� Z�t�

ZS�t�ZC� = − i Tr��̂can
S �t� � �̂can

C �e−�ĤI
,Ĥ�t���	 .

�17�

Using the commutator relation �14� we conclude that

�e−�ĤI
, Ĥ�t���=0 ∀ t�. Thus, the relation �11� also holds for

this scenario and therefore we conclude using Eq. �16� and
relation �11� in Eq. �2� that we still have

e−�W =
ZS�t�
ZS�0�

. �18�

This proves that the Jarzynski relation also holds for canoni-
cal coupling which conserves the interaction energy.

Note that the work �W performed on the compound
closed system equals the work �Wsub done on the subsystem
S, i.e., �W=�Wsub �14�. This is, in general, different from
the energy change of the subsystem during this process since
the subsystem also exchanges energy with its environment,

�Esub = �Wsub + �Qsub, �19�

whereas the energy change of the total, closed system still
equals the work performed on it:

�Etot = �W . �20�

So the relation �18� is applicable if, in an experiment, one
measures �W=�Wsub, which is the work one has to supply
in order to perform a chosen process.

So Eq. �18� can be rewritten as

e−�WS
=

ZS�t�
ZS�0�

. �21�

C. Canonical coupling: High-temperature limit

Finally, we consider systems with a relatively high tem-
perature T, i.e., we have a small inverse temperature � at the
beginning. We can then expand the exponent of the partition
sum according to the Baker-Campbell-Hausdorff formula
and related identities. In the following, we will use the fol-
lowing abbreviations:

A � ĤS�t� � 1̂C + 1̂S
� ĤC and B � �Ĥint. �22�

We thus have

e−�Ae−�B = e−��A+B�+��2/2��A,B� + O��3� , �23�

which can be rewritten as

e−�Ae−�B = e−��A+B�e��2/2��A,B�. �24�

On the other hand,

e−�Be−�A = e−��B+A�e��2/2��B,A� + O��3� . �25�

We combine Eq. �24� with Eq. �25�, and using

�e−��B+A�,e��2/2��B,A�� = 0 + O��3� �26�

we arrive at

= e −2��A+B�.

= e −��A+B� ee−�Ae−�B

�24�

e −�Be−�A

�25�

��2/2��A,B� e �2/2 �B,A� e−��B+A�� �

�27�

Thus, we find

Z�t� = Tr�e−��A+B�� =
�27�

Tr�e−��/2�Ae−��/2�Be−��/2�Be−��/2�A�

= Tr�e−�Ae−�B� , �28�

or, resubstituting A and B,

Z�t� = Tr�e−��ĤS�t�� 1̂C+1̂S
�ĤC�e−�ĤI

� . �29�

We now can proceed as above:

Z�t� = Tr��̂S�t� � �̂Ce−�ĤI
�ZS�t�ZC. �30�

We again investigate the time dependency of the trace using
the Liouville-von Neuman equation:

d

dt
� Z�t�

ZS�t�ZC� = − i Tr��Ĥ�t��,�̂S�t� � �̂C�e−�ĤI
	

= − i Tr��ĤS�t�� � 1̂C + 1̂S
� ĤC,�̂S�t�

� �̂C�e−�ĤI
	 = − i Tr��ĤS�t�� � 1̂C,�̂S�t�

� �̂C�e−�ĤI
	 = − i Tr��ĤS�t��,�̂S�t��

� �̂Ce−�ĤI
	 , �31�

where we have used the cyclic property of the trace in the
first equality in order to get rid of the interaction term of the

Hamiltonian. If we have �ĤS�t�� , ĤS�t��=0 ∀ t�, as for a
time-dependent Zeeman splitting of a spin, for example, we
immediately arrive at

d

dt
� Z�t�

ZS�t�ZC� = 0 �32�

and therefore

Z�t�
Z�0�

=
ZS�t�
ZS�0�

= e−�W = e−�WS
. �33�

So, for high initial temperatures of the open quantum system,
the Jarzynski relation holds if the Hamiltonian of the system
commutes at different times. This can be shown to hold also
in third order of � �see the Appendix�.
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From the derivation of this result one might expect that
the Jarzynski relation would not hold in this form for arbi-
trary �, but that it could fail, and that the deviation of the
average e−�W from the relation of the partition sums should
become larger the smaller is the inverse temperature �. This
expectation will be tested numerically.

IV. NUMERICAL RESULTS

As a simple model system we choose the standard poten-
tial well with width L containing one particle �particle in a
box�. Its spectrum is truncated at level n �cutoff�. The well is
coupled microcanonically to an environment �see Fig. 2�. To
ensure that no energy is exchanged between system and en-
vironment, we model the surroundings as a single, highly
degenerate, energy level �16�.

One wall of this well �the left one, say� is now supposed
to be movable, allowing for dilation and compression of the
well �well width L�t��. This time dependence will model the
working process. The particle is prepared initially in a ca-
nonical state. Then the time evolution of the system is cal-
culated numerically under pure Schrödinger dynamics. From
this we can infer the work distribution for any control func-
tion L�t�. The discrete values of W result from the discrete
spectral energy differences. The nonmonotonic behavior of
P�W� is a combined effect of the spectrum and the initial
occupation probabilities. We use this P�W� in order to com-
pute the average e−�W. This result is then compared with the
relation of the partition sums ZS�t� /ZS�0�, which can easily
be computed independently for this model. We define e−�W

=�JZ
S�t� /ZS�0� with �J being a test factor. If the Jarzynski

relation is correct, the test factor should always equal 1
within numerical accuracy.

Because we want to consider the work done on the com-
pound, closed system, we define the work as W��E, since
the work simply equals the energy change of the closed sys-
tem. Since we will, in general, find the system in different
states for each measurement, the work is said to fluctuate.
However, the definition of work and the corresponding fluc-
tuations is still a matter under dispute �17�.

A. Closed systems

For our investigation of the closed system we choose the
interaction strength with the environment to be zero.

Our numerics show that, within numerical errors, for any
process realization and any process velocity chosen, we in-
deed have �J=1, which means that the Jarzynski relation is
found to be valid. This result holds for different wall dis-
placement velocities, different initial temperatures, or differ-
ent well widths. See Fig. 3 for a typical result for the work
distribution obtained.

B. Microcanonical coupling

Next, we turn to systems with ��0. In order to check
whether the Jarzynski relation holds, we need to consider a
process for which the final Hamiltonian differs from the ini-
tial one; otherwise one trivially would have Z�t� /Z�0�
=ZS�t� /ZS�0�=1. For now, we focus on expansions of the
quantum well.

We find that the work distribution is slightly affected by
the microcanonical environment �see Fig. 4�. For better com-
parison, the work distribution for the closed system is de-
picted, too. We get �J=1 within our numerical accuracy, in-
dicating that the Jarzynski relation is valid.

This also holds when changing the coupling strength, en-
larging the environment by increasing the degeneracy, or
changing the initial temperature. Note that the distribution of
work for the closed system is, indeed, though only slightly,
different from the one obtained for the same boundary con-
ditions under microcanonical coupling.

Due to the interaction between system and environment
the energy levels of the system are “smeared out.” Despite
the fact that the interaction is weak, the system’s energy
levels are each split into many energy levels with slightly
different energy eigenvalues according to the number of en-
ergy levels in the environment and their respective degenera-
cies. Some of these energy levels are resolved within numeri-
cal accuracy, leading to slightly distinct values of work W.

L(t)

V = ∞V = ∞ V = 0

⊗ Degeneracy NC

FIG. 2. Model system for our numerical investigations. On the
left-hand side the quantum well with a movable wall is depicted.
The well is coupled to an environment with a single energy level of
high degeneracy.

Work W

P
(W

)

closed

−40 −20 0 20 40 60 80 100 120

1

0.1

0.01

0.001

1×10−4

1×10−5

FIG. 3. Distribution of work P�w� for a closed system. A circu-

lar process with Ĥ�tfinal�= Ĥ�0� and a maximal width of Lmax

=2L�0� was chosen. The wall has been moved with constant veloc-
ity ±v. The velocity of the process as well as the unit energy is in
arbitrary units. Probabilities smaller than 1�10−5 are suppressed;
cutoff at n=5 is justified by a low initial temperature. The average

work W̄ is larger than zero. There is a finite chance to gain work
while performing this process, as can be seen from the points to the
left of the dashed line W=0.
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This might lead to the impression that we have multiple val-
ues of work probabilities P�W� for a given work W in Figs.
4–7 for the open system. This is not the case since, for
exactly—in the numerical sense—equal work values, the
probabilities add up to a single probability P�W�.

C. Canonical coupling

We finally turn to a canonical bath, investigating whether
the Jarzynski relation still holds in the high-temperature
limit, as predicted. To this end, we couple a canonical bath to
the quantum well. It is modeled in such a way that it allows
every possible transition in our quantum well when in reso-
nance �16�. Its degeneracy grows with increasing energy. For
now, we focus on expansions of the quantum well, which is

effectively cooled down by these dilations. This will cause
energy to flow from the bath into the system, trying to restore
the initial temperature, and we expect that transitions to
higher energy levels will be facilitated. First, we have chosen
a moderate initial temperature, such that only the first two
energy levels are significantly occupied, resulting typically in
a work distribution as depicted in Fig. 5.

We find that Eq. �33� does not hold; the Jarzynski relation
of this form is not strictly valid. We have for our test factor
�J=0.999, which quantifies the still small deviation from the
Jarzynski relation. From Sec. III C we suppose that the lower
the temperature the bigger this deviation. Indeed, if we
choose the initial temperature to be very low, such that al-
most only the ground state is occupied, we have �J=0.98.
Moreover, we expect the work distribution to be very narrow
since transitions from the ground state into higher ones are
relatively unlikely �see Fig. 6�.

Next, we choose a very high initial temperature, such that
almost every energy level has the same probability to be
occupied, in order to check whether the Jarzynski relation is
valid as predicted. The work distribution is, as expected,

Work W

P
(W

)

microcanonical
closed

−150 −100 −50 0 50

1

0.1

0.01

0.001

1×10−4

1×10−5

FIG. 4. Distribution of work P�w� for a closed and a microca-
nonical system, respectively. An expansion with L�tfinal�=2L�0� was
chosen. The wall has been moved with constant velocity v. The
degeneracy was NC=150 and the coupling strength �=0.015 for the
microcanonical coupling. For the closed system, � was set to zero.
The velocity of the process as well as the unit energy are in arbi-
trary units. Probabilities smaller than 1�10−5 are suppressed; cut-
off at n=5.

Work W

P
(W

)

canonical

−150 −100 −50 0 50

1

0.1

0.01

0.001

1×10−4

1×10−5

FIG. 5. Distribution of work P�w� for a canonical system. An
expansion with L�tfinal�=2L�0� and �=0.015 was chosen. The wall
has been moved with constant velocity v. The velocity of the pro-
cess as well as the unit energy are in arbitrary units. Probabilities
smaller than 1�10−5 are suppressed; cutoff at n=5.

Work W

P
(W

)

cold

−150 −100 −50 0 50

1

0.1

0.01

0.001

1×10−4

1×10−5

FIG. 6. Same as Fig. 5, but with low initial temperature.

Work W

P
(W

)

hot
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0.001

1×10−4

1×10−5

FIG. 7. Same as Fig. 5, but with high initial temperature.
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rather broad for these temperatures �see Fig. 7�. Neverthe-
less, we find that �J=1 within numerical accuracy. This
means that Eq. �33� is satisfied for high initial temperatures,
confirming our high-temperature limit.

V. CONCLUSION

Starting from the quantum version of the Jarzynski rela-
tion for closed systems, we have shown that this relation can
be generalized to open quantum systems of different cou-
pling types. The key idea has been to split the exponent of
the partition sum into parts for the system and environment,
respectively. This is, in general, not possible, since the sys-
tem and environmental Hamiltonians do not commute with
the interaction part. This fact would result in additional terms
containing the commutator of these Hamiltonians.

Nevertheless, we have been able to split up the partition
function under the selected conditions, since then the correc-
tion terms cancel.

We have stressed that the problem of fluctuation is inti-
mately related to some measurement scheme. Further inves-
tigations should be guided by the observation that in quan-
tum mechanics it seems more natural to consider the
fluctuation of a �subsystem� energy rather than of work
proper �18�.

APPENDIX: THIRD-ORDER EXPANSION IN TERMS
OF ��1

We want to extend the result of Sec. III C to the third
power of �. We proceed analogously as above, trying to split
up the exponential function. For O��4�=0 we arrive at

e−�Ae−�B = e−��A+B�+��2/2��A,B�e−��3/12��†A,�A,B�‡+†B,�A,B�‡�

�A1�

and

e−�Be−�A = e��3/12��†A,�A,B�‡+†B,�A,B�‡�e−��B+A�−��2/2��A,B�.

�A2�

Combining Eq. �A1� with Eq. �A2�, we have

� e −�C+e−�C−,

=e−�Ae−�B

�A1�

e −�Be −�A

�A2�

e−��A+B� + �2/2 �A,B� e−��B+A� −�� �A,B��2/2��

�A3�

with C+�−��A+B�+ ��2 /2��A ,B� and C−�−��A+B�
− ��2 /2��A ,B�. We investigate the resulting product, intro-
ducing the abbreviation �C+ ,C−��D±:

e−�C+e−�C− = e−��C++C−�+��2/2�D±−��3/12���C+,D±�+�C−,D±�� + O��4� .

�A4�

Since C+=C−+�2�A ,B�, we have

D± = − �3�†A,�A,B�‡ + †B,�A,B�‡� �A5�

⇒�C±,D±� =
O��4�

0. �A6�

This leaves us with

e−�C+e−�C− = e−��C++C−�+��2/2�D± = e−2��A+B�e��2/2�D± + O��4�
�A7�

and analogously

e−�C−e−�C+ = e��2/2�D�e−2��A+B� + O��4� , �A8�

with D���C− ,C+�=−D±. Combining these two relations,
we have

e−�C+e−�C−e−�C−e−�C+ = e−4��A+B�. �A9�

Therefore we have

Tr�e−�Ae−�B� = Tr�e−��/2�Ae−��/2�Be−��/2�Be−��/2�A�

=
�A3�

Tr�e−��/2�C+e−��/2�C−�

= Tr�e−��/4�C+e−��/4�C−e−��/4�C−e−��/4�C+�

=
�A9�

Tr�e−��A+B�� = Z . �A10�

The rest of the proof for the Jarzynski relation to hold runs
analogously to Sec. III C.
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